2007/07/24

RNA

Ribonucleic acid or RNA is a nucleic acid polymer consisting of nucleotide monomers that plays several important roles in the processes that translate genetic information from deoxyribonucleic acid (DNA) into protein products; RNA acts as a messenger between DNA and the protein synthesis complexes known as ribosomes, forms vital portions of ribosomes, and acts as an essential carrier molecule for amino acids to be used in protein synthesis.
RNA is very similar to DNA, but differs in a few important structural details: RNA nucleotides contain ribose sugars while DNA contains deoxyribose and RNA uses predominantly uracil instead of thymine present in DNA. RNA is transcribed (synthesized) from DNA by enzymes called RNA polymerases and further processed by other enzymes. RNA serves as the template for translation of genes into proteins, transferring amino acids to the ribosome to form proteins, and also translating the transcript into proteins.
Nucleic acids were discovered in 1868 (some sources indicate 1869) by Johann Friedrich Miescher (1844-1895), who called the material 'nuclein' since it was found in the nucleus. It was later discovered that prokaryotic cells, which do not have a nucleus, also contain nucleic acids. The role of RNA in protein synthesis had been suspected since 1939, based on experiments carried out by Torbjörn Caspersson, Jean Brachet and Jack Schultz. Hubert Chantrenne elucidated the messenger role played by RNA in the synthesis of proteins in ribosome. The sequence of the 77 nucleotides of a yeast RNA was found by Robert W. Holley in 1964, winning Holley the 1968 Nobel Prize for Medicine. In 1976, Walter Fiers and his team at the University of Ghent determined the complete nucleotide sequence of bacteriophage MS2-RNA.
Chemical and Stereochemical structure: RNA with its nitrogenous bases to the left and DNA to the right. RNA is a polymer with a ribose and phosphate backbone and four different bases: adenine, guanine, cytosine, and uracil. The first three are the same as those found in DNA, but in RNA thymine is replaced by uracil as the base complementary to adenine. This base is also a pyrimidine and is very similar to thymine. Uracil is energetically less expensive to produce than thymine, which may account for its use in RNA. In DNA, however, uracil is readily produced by chemical degradation of cytosine, so having thymine as the normal base makes detection and repair of such incipient mutations more efficient. Thus, uracil is appropriate for RNA, where quantity is important but lifespan is not, whereas thymine is appropriate for DNA where maintaining sequence with high fidelity is more critical.
However, there are also numerous modified bases and sugars found in RNA that serve many different roles. Pseudouridine (Ψ), in which the linkage between uracil and ribose is changed from a C–N bond to a C–C bond, and ribothymidine (T), are found in various places (most notably in the TΨC loop of tRNA). Thus, it is not technically correct to say that uracil is found in RNA in place of thymine. Another notable modified base is hypoxanthine (a deaminated Guanine base whose nucleoside is called Inosine). Inosine plays a key role in the Wobble Hypothesis of the Genetic Code. There are nearly 100 other naturally occurring modified nucleosides, of which pseudouridine and nucleosides with 2'-O-methylribose are by far the most common. The specific roles of many of these modifications in RNA are not fully understood. However, it is notable that in ribosomal RNA, many of the post-translational modifications occur in highly functional regions, such as the peptidyl transferase center and the subunit interface, implying that they are important for normal function.
Single stranded RNA exhibits a right handed stacking pattern that is stabilized by base stacking.
The most important structural feature of RNA, indeed the only consistent difference between the two nucleic acids, that distinguishes it from DNA is the presence of a hydroxyl group at the 2'-position of the ribose sugar. The presence of this functional group enforces the C3'-endo sugar conformation (as opposed to the C2'-endo conformation of the deoxyribose sugar in DNA) that causes the helix to adopt the A-form geometry rather than the B-form most commonly observed in DNA. This results in a very deep and narrow major groove and a shallow and wide minor groove. A second consequence of the presence of the 2'-hydroxyl group is that in conformationally flexible regions of an RNA molecule (that is, not involved in formation of a double helix), it can chemically attack the adjacent phosphodiester bond to cleave the backbone.
Comparison with DNA: RNA and DNA differ in three main ways. First, unlike DNA which is double-stranded, RNA is a single-stranded molecule in most of its biological roles and has a much shorter chain of nucleotides. Secondly, while DNA contains deoxyribonucleic acid, RNA contains ribonucleic acid, (there is no hydroxyl group attached to the pentose ring in the 2' position in DNA, whereas RNA has two hydroxyl groups). These hydroxyl groups make RNA less stable than DNA because it is more prone to hydrolysis. In light of this, several types of RNA (tRNA, rRNA) contain a great deal of secondary structure, which help promote stability. Thirdly, the base-pair of adenine is not thymine, as it is in DNA, but rather uracil, which is a unmethylated form of thymine.
Like DNA, most biologically active RNAs including tRNA, rRNA, snRNAs and other non-coding RNAs (such as the SRP RNAs) are extensively base paired to form double stranded helices. Structural analysis of these RNAs have revealed that they are not, "single-stranded" but rather highly structured. Unlike DNA, this structure is not just limited to long double-stranded helices but rather collections of short helices packed together into structures akin to proteins. In this fashion, RNAs can achieve chemical catalysis, like enzymes. For instance, determination of the structure of the ribosome in 2000 revealed that the active site of this enzyme that catalyzes peptide bond formation is composed entirely of RNA.
Synthesis: Synthesis of RNA is usually catalyzed by an enzyme - RNA polymerase, using DNA as a template. Initiation of synthesis begins with the binding of the enzyme to a promoter sequence in the DNA (usually found "upstream" of a gene). The DNA double helix is unwound by the helicase activity of the enzyme. The enzyme then progresses along the template strand in the 3’ -> 5’ direction, synthesizing a complementary RNA molecule with elongation occurring in the 5’ -> 3’ direction. The DNA sequence also dictates where termination of RNA synthesis will occur. There are also a number of RNA-dependent RNA polymerases as well that use RNA as their template for synthesis of a new strand of RNA. For instance, a number of RNA viruses (such as poliovirus) use this type of enzyme to replicate their genetic material. Also, it is known that RNA-dependent RNA polymerases are required for the RNA interference pathway in many organisms.

1 comment:

Anonymous said...

Genial fill someone in on and this post helped me alot in my college assignement. Thanks you on your information.