Prophase I
Leptotene
The first stage of prophase I is the leptotene stage, also known as leptonema, from Greek words meaning "thin threads." During this stage, individual chromosomes begin to condense into long strands within the nucleus. However the two sister chromatids are still so tightly bound that they are indistinguishable from one another.
Zygotene
The zygotene stage, also known as zygonema, from Greek words meaning "paired threads, occurs as the chromosomes approximately line up with each other into homologous chromosomes. The combined homologous chromosomes are said to be bivalent. They may also be referred to as a tetrad, a reference to the four sister chromatids. The two chromatids become "zipped" together, forming the synaptonemal complex, in a process known as synapsis.
Pachytene
The pachytene stage, also known as pachynema, from Greek words meaning "thick threads," contains the chromosomal crossover. Nonsister chromatids of homologous chromosomes randomly exchange segments of genetic information over regions of homology. (Sex chromosomes, however, are not identical, and only exchange information over a small region of homology.) Exchange takes place at sites where recombination nodules have formed. The exchange of information between the non-sister chromatids results in a recombination of information; each chromosome has the complete set of information it had before, and there are no gaps formed as a result of the process. Because the chromosomes cannot be distinguished in the synaptonemal complex, the actual act of crossing over is not perceivable through the microscope.
Diplotene
During the diplotene stage, also known as diplonema, from Greek words meaning "two threads," the synaptonemal complex degrades and homologous chromosomes separate from one another a little. The chromosomes themselves uncoil a bit, allowing some transcription of DNA. However, the homologous chromosomes of each bivalent remain tightly bound at chiasmata, the regions where crossing over occurred.
Diakinesis
Chromosomes condense further during the diakinesis stage, from Greek words meaning "moving through." This is the first point in meiosis where the four parts of the tetrads are actually visible. Sites of crossing over entangle together, effectively overlapping, making chiasmata clearly visible. Other than this observation, the rest of the stage closely resembles prometaphase of mitosis; the nucleoli disappears, the nuclear membrane disintegrates into vesicles, and the meiotic spindle begins to form.
Synchronous processes
During these stages, centrioles are migrating to the two poles of the cell. These centrioles, which were duplicated during interphase, function as microtubule coordinating centers. Centrioles sprout microtubules, essentially cellular ropes and poles, during crossing over. They invade the nuclear membrane after it disintegrates, attaching to the chromosomes at the kinetochore. The kinetochore functions as a motor, pulling the chromosome along the attached microtubule toward the originating centriole, like a train on a track. There are two kinetochores on each tetrad, one for each centrosome. Prophase I is the longest phase in meiosis.
Microtubules that attach to the kinetochores are known as kinetochore microtubules. Other microtubules will interact with microtubules from the opposite centriole. These are called nonkinetochore microtubules.
Metaphase I
Homologous pairs move together along the phase plate: as kinetochore microtubules from both centrioles attach to their respective kinetochores, the homologous chromosomes align along an equatorial plane that bisects the spindle, due to continuous counterbalancing forces exerted on the bivalents by the microtubules emanating from the two kinetochores. The physical basis of the independent assortment of chromosomes is the random orientation of each bivalent along the metaphase plate.
Anaphase I
Kinetochore microtubules shorten, severing the recombination nodules and pulling homologous chromosomes apart. Since each chromosome only has one kinetochore, whole chromosomes are pulled toward opposing poles, forming two diploid sets. Each chromosome still contains a pair of sister chromatids. Nonkinetochore microtubules lengthen, pushing the centrioles further apart. The cell elongates in preparation for division down the middle. In prophase 1 the DNA coils tightly and individual chromosomes become visible under the light microscope. Homologous chromosomes closely associated in synapsis and they exchange segments by crossing over.
Telophase I
The first meiotic division effectively ends when the centromeres arrive at the poles. Each daughter cell now has half the number of chromosomes but each chromosome consists of a pair of chromatids. This effect produces a variety of responses from the neuro-synrchromatic enzyme, also known as NSE. The microtubules that make up the spindle network disappear, and a new nuclear membrane surrounds each haploid set. The chromosomes uncoil back into chromatin. Cytokinesis, the pinching of the cell membrane in animal cells or the formation of the cell wall in plant cells, occurs, completing the creation of two daughter cells.
Cells enter a period of rest known as interkinesis or interphase II. No DNA replication occurs during this stage. Note that many plants skip telophase I and interphase II, going immediately into prophase II.
2007/07/23
Meiosis I
เขียนโดย Unknown ที่ 7/23/2007
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment